A new general fractional-order derivative with Rabotnov fractional-exponential kernel
نویسندگان
چکیده
منابع مشابه
Properties of a New Fractional Derivative without Singular Kernel
We introduce the fractional integral corresponding to the new concept of fractional derivative recently introduced by Caputo and Fabrizio and we study some related fractional differential equations.
متن کاملA new Definition of Fractional Derivative without Singular Kernel
In the paper, we present a new definition of fractional derivative with a smooth kernel which takes on two different representations for the temporal and spatial variable. The first works on the time variables; thus it is suitable to use the Laplace transform. The second definition is related to the spatial variables, by a non-local fractional derivative, for which it is more convenient to work...
متن کاملFractional Derivative as Fractional Power of Derivative
Definitions of fractional derivatives as fractional powers of derivative operators are suggested. The Taylor series and Fourier series are used to define fractional power of self-adjoint derivative operator. The Fourier integrals and Weyl quantization procedure are applied to derive the definition of fractional derivative operator. Fractional generalization of concept of stability is considered.
متن کاملThe operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications
In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order $gamma$ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...
متن کاملNon-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Thermal Science
سال: 2019
ISSN: 0354-9836,2334-7163
DOI: 10.2298/tsci180825254y